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Solution Pathway

Below are sample answers and solutions. Please consider the merit of alternative

responses.

Practice Examination 2, Units 3 and 4

SECTION A: Multiple-Choice Questions — Answers

Specialist Mathematics Examination 2: Marking Scheme

1. |C 5. |C 9. |A 13. | C 17. | C
2. |B 6. |D 10. | B 14. | D 18. | D
3. |A 7. |D 11.|C 15. | A 19. | C
4, | D 8. |B 12. |D 16. | B 20. | A

SECTION A: Multiple-Choice Questions — Solutions

Q1 | To prove that if 4’4 Gu o Saisevgn teen ngipadd, it is assumed for the
P = 0
sake of contradiction that #* 4 Gu  54isevgn qnd n4sevgn
P A -0
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Q2 | ¢« x=6 is a vertical asymptote therefore x =6 is a root of B
ax> +b|x|+c:
36a+6b+c=0 (1)
3 3
x” -1 x| -1
o Let g(v)=——— and f(x)=— L~ (x|
ax” +bx+c ax” +b|x|+c
From a CAS: g(x)=lx—%+£m¢
a a” ax"+bx+c
Therefore y = g(x) has an oblique asymptote y :lx—%
a a
e Caset1: ¥20:
f(x)=g(x) therefore y =lx—% is a diagonal asymptote of y = f(x).
a a
1 b .
Compare y=—x-— with y=-2x+14:
a a
LI —%=14:>b=—14azz—Z
a 2 a 2
Substitute a = —% and b= —% into (1): ¢=39. No corresponding
option.
e Case2: ¥<0:
f(x)=g(-x) therefore y= —lx—% is a diagonal asymptote of y = f(x)
a a
1 b .
Compare y=-—x—— with y =-2x+14:
a a
—l:—zza:l. _%:143[):_14612:_1
a 2 a 2
. 1 7. .
Substitute a =3 and b =3 into (1): ¢=3. Option B.
Discussion of Case 2:
3 2 =D (x*+x+1) 2(x*+x+1
It follows that g(x)= zx L . ( ) = ( ) , x#1
1x"—Ix+3 (x=1)(x-6) x—6
Therefore y=g(x) has a‘hole’at x=1.
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A
Q3 | Horizontal asymptotes: y =a—b> (%j and y=a-0b* (—gj =a+b’ (%) .
It is therefore required that either:
2( 7 2 2a
Case1: a-b (5)20 and a >0 therefore »* <— and a >0
T
or
2 7 5 2a
Case 2: a+b (Ejso and a <0 therefore b*<-— and a<0
T
Both cases are equivalent to »° < 2a
T
Q 4 | The geometric interpretation of —iz is the rotation of z by 90° ina D

clockwise direction. Therefore the area of the triangle is half the area of
a square whose vertices are at0, z, —iz, z—iz:

lm(2)

%
127
.
ol< th%)
-1
By inspection the length of a side of the square is | z| therefore the area
of the square is |z |* therefore the area of the triangle is %|z|2.
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Qs Let z=x+iy, x,yeR. C
The rays Arg(z+l):§, Arg(z—l):% and Arg(z—4)= § intersect at the

point where x=1:

\M(?:)V A(j(%"():‘l}&

V™

-1
The cartesian equation of Arg(z+1) :g is y= Br+3, x>-1
Substitute x=1: y =23

Therefore the rays Arg(z+l)=%, Arg(z—l)=§ and Arg(z—4)=p
intersect at z =1+2+/3i

Substitute z =1+2+/3i into Arg(z—4)=p"

p = Arg (—3 + 2\/51') = —arctan (%J
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Q6 | ¢ is real therefore 3a and —a lie on the real axis. D
Geometric interpretation:
| z+a| is the distance of z from —a, |z-3a| is the distance of z from
3a

The distance between —a and 3a is 4a

Let z=z R where z;,>3a. Let |z, -3al=d =|z;+a|=4a+d:

lm(%)
s A

Then|z, +a|—|z -3al=(4a+d)—d =4a
Therefore |z +a|—|z—-3a|=4a defines aray.
Discussion: By inspection, the equation of the ray is y =0, x>3a. The

terminus of the ray has coordinates (3a, 0) and is included as part of
the ray.

Algebraic calculation:

Substitute z=x+iy, x,yeR,int0 |z+a|—|z-3al=k:

\/(era)2 +y? —\/(x—3»a)2 +y' =k

= \J(x+a)’ +y? =k+(x-3a)* +*
= (x+a) +y? =k? +(x=3a)* + y* +2k/(x —3a)* + *
= 8ax—8a’ —k? = 2k+(x—3a)* + y*

Note the implied restriction:

2 2
RHS > 0 therefore LHS =8ax—8a> —k> > 0= x> > 8+k
a
= (8ax—8a> ~k*) =4k*((x-30)* +1?)
2 9 8a’ +k?
= (da-k)4a+k)2x+k-2a)2x—-k-2a)=4k"y", x> :
a

If k =4a then a ray is obtained: 0:4kzy2 =y=0, x>3a
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If k>4a: x>3a and there is no solution since

LHS = (—ve)(+ve)(+ve)(+ve) <0 and RHS> 0

The pseudocode applies Euler's method to find an approximate solution

Q7
. . _dx £ +1 .
to the differential equation — =——=f(z,x) given that {;=a and X, =3
dt  x"+1
The number of iterations is n =10 therefore f,, = b=4, the value of the
step size is 274 _ 41_0" and x,; =3.504 (output correct to three decimal
n
places).
Substitute the value of a in each option into the above data and execute
Euler's Method on a CAS.
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dm
dt
tank).
* Rate at which salt enters the tank

= (rate of inflow) (concentration of salt in inflow)

= (5 litres per minute) (6 kg per litre) = 30 kg per minute.
* Rate at which salt leaves the tank

= (rate of outflow) (concentration of salt in outflow)

= (7 litres per minute) (concentration of salt in outflow).

where V'is the volume of solution in the tank after  minutes:
V' = (initial volume) + (volume added after t minutes via inflow)

— (volume removed after  minutes via outflow)
= 90 litres + 5¢ litres — 7¢litres =90-2¢ litres.

m
90 —2¢

Therefore: concentration of salt in outflow = 22 — kg per litre.

Therefore rate at which salt leaves the tank

= (7 litres per minute) (concentration of salt in outflow)

=(7 = k t
( )(90_%) 50—, kg per minute

dm

dt
tank)

Tm 7
(30) [90—2tj 30

* After t minutes have elapsed: Concentration of salt in outflowz;

Q 8 | — = (rate at which salt enters the tank) — (rate at which salt leaves the

m

~— —(rate at which salt enters the tank) — (rate at which salt leaves the

B
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» Differential equation for the concentration c of salt in the tank at time
t:
m m
C=—=
V. 90-2t
:d—m—i(c(%—zt)) :£(90—2t)+c(—2) :(90—2t)£—2c
drdt $14 442 4 4 43 dt

Product Rule

= m=c(90-2¢)

Substitute 2™ =30_ " _.
d 90— 21

7¢(90 - 2¢)

(90209 _9¢ =30
dt 90 -2t

= 90-20)% Z30—5¢
dt

Q9

The value of Z—y at =2 is required.
X

32 2
When ¢ >3 : x(t)=| |=t 3, y(t):—i.
t+1 t+1 t+2

Use a CAS to get the values of % and % when t=2:

d_yzﬂxﬁ:i when ¢ =2
dx dt dx 44
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Q10 | Consider J, :Isec"(x) dx and use integration by parts: B

J.uﬂdx=uv—jv@dx
dx dx

Let u = sec” % (x)

=3 % = (n—2)sec(x)" sin(x)sec’ (x) = (n — 2)sec(x)" " sin(x)
X

Let v =sec’(x) = v = tan(x)
dx
Ty =5 45 )~ [ (0 (179555 f)sip) d
u v v du
dx

=sec” 2 (x) tan(x) — (n — Z)I sin?(x)sec” (x) dx
=sec”" 2 (x) tan(x) — (n — 2)I (1 —cos” (x))sec" (x)dx

=sec"? (x) tan(x) — (n — 2)[ J sec” (x) dx — J sec” % (x) dx}

=sec”(x) tan(x) — (n—2) [J .= n—Z]

=sec" *(x)tan(x)— (n—2)J, +(n—2)J, _,

=J, = %secH(X) tan(XH%Jn-z (n=l)
"

1 z p-2 22 n—2
=1 =—|sec"*(x)tan(x) |? +——1 = x/§+ I
\ n_l[ (x)tan(x) | e =3
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Q 11 The area of the surface generated by rotating the curve with equation C
y =tan"'(x) about the line x =1 from the points where x=2 to x=4 is
equal to the surface generated by rotating the curve with equation

y =tan"'(x+1) about the y-axis from the points where x=1 to x=3.

Area of the surface generated by rotating the curve y = f(x) about the
y-axis:

y=b 5
Sz27rjx 1+[éj dy
" ey
y=a

y=tan'(x+1)=tan(y) =x+1= x =tan(y) -1

x=1=y=tan"'(2). x=3=y=tan"'(4)
tan_1(4)

S=2r j (tan(y)—1)y/1+sec* (y) dy

tan~1(2)
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Q12 The vectors a and b form a parallelogram with pairs of opposite sides D

of length |a|=4 and |b|=3 and diagonals of length |[a—b|=2 and

For the parallelogram with pairs of opposite sides of length « and » and
diagonals of length p and ¢: p* +4¢* = Z(a2 +b2).

DoAb . l: dl’fl')l-— 245605(&) —D
. 2 1 bC()5(!304—ﬁ)
AO/"IC; 9 =7 ] fL ~1a
ca'th’ +1abcas(,§1) il

0+0: prq =2

P g’ =2(a’+b?)  =2+x7=2(4+3")  =x-fa+bl=46

Q13 | Letthe angle between a and b be 6 c
e arb=4=al|b|cos(d)=4. (D)
* |axb|=7=]a|blsin(@)=7. ....(2)
(2 7 0
0 : tan(@):Z:0z6O.3
dt 1 D
Q14 | ,_&_ni(yy =-—=———and x=2 when (=3,
dt dx tan" (x)

X

The integral solution must be used: t=J‘+ dw+3.
tan~ (w)

2
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5

Substitute x=5: ¢= J‘+ dw+3~5.359
tan~ (w)

The acceleration of the object is constant therefore the straight line

Q15 motion formulae for constant acceleration can be used:
* Motion after 10 seconds:
Data: u=6 ms™!, v=-8 ms™!, =10 seconds, a="7?
v=u-+at = -8=6+a(10) =a=—-14 ms>2
¢ Motion after 12 seconds:
Data: u=6 ms™!, t=12 seconds, a=-14 ms2, x=7?
x= ut+%at2 = 6(12)+%(—1.4)(12)2 =-28.8m
Therefore the distance is 28.8 metres.
©2024 2024-MSP-VIC-U34-NA-EX2-QATS
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* Time at which the aircraft drops the package: 540=600-3f=1¢=20 B
Q16 seconds.
* Initial conditions for the motion of the package:
r,(0)=r(20)=1000i+540j,  1p(0)=1(20)=501-3]
Method 1:
Solve 1,(t)=-9.8] (since the air resistance acting on the package is
negligible) subject to the above initial conditions (either using a CAS or
‘by hand’):
tp(f) = (1000+50t)i+(540—3t—4.9t2) ]
Therefore x,(r)=1000+50: and y,(t) =540-3¢-4.9¢"
* Time at which the package lands:
yp(t)=540-3t-49 =0 (and >0) =1=10.1962
e Horizontal distance of package from O:
xp(10.1962) =1000 +50(10.1962) =1509.81m
Method 2:
J T
540
' > x
0 '°°°%
|n kil hor%oﬂp"lo . xzpts (50)(20) = /o7
Jiskance €rom O
e Acceleration of the package is constant therefore the straight line
motion formulae for constant acceleration can be used:
Horizontal motion (— +ve): Vertical motion (| +ve):
u=>50 msfl, a:Oms72 7/[:31'1'1571, a:9.8ms72,
y=540m
t=? 10.1962, x=? t=?
x =ut +%at2 =(50)(10.1962) = 509.81 y=ut +%m2 = 540 =3¢ +4.9¢*
=t~10.1962
©2024 2024-MSP-VIC-U34-NA-EX2-QATS
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* Therefore horizontal distance of package from O
=1000+509.81=1509.81
* Therefore distance short of the drop position
=1550-1509.81=40.19m
Q17 | ° Determine the value(s) of k£ for which the planes
2x+(k—-4)y+Q@B-k)z=1, 2y+(k-3)z=2, x-2y+z=1
do not intersect at a unique point:
2 k-4 3-k
detf0 2  k-31=0 —=k=-12
1 =2 1
e Test each solution.
k=-1: 2x—5y+4z=1, y-2z=1, x-2y+z=1
Solve simultaneously (use a CAS):
Infinite number of solutions which corresponds to a line.
k=2: 2x-2y+z=1, 2y—z=2, x=2y+z=1
Solve simultaneously (use a CAS): No solution.
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Q18 | o x;1=3_y=211 =>x=3t+1, y=—ar+3, z=4t-1, teR D
o

Therefore a vector in the direction of the line is 3i— ¢ j+ 4k

x+l y-2 z-1
i 3 5

Therefore a vector in the direction of the lineis gi+3 j+5k

=x=pL0s—1, y=3s+2, z=55+1, seR

e Therefore a vector normal to each line is (use a CAS) is
(3i—aj+4ij(ﬂi+3j+5k}:(—12—5a)i+(4[;’—15)j+(9+aﬁ)k
e Therefore 3i—7 j+ yk =(-12—5a) i+ (48 —15) j+ 9+ af)k

Equate i-components: 3=-12-5a=>a=-3

Equate j-components: —7=44-15= =2

Equate k-components: y =9+(-3)(2)=3

Q19 sd(X)= sd(X) Cc

I
. Var(X):E(XZ)—(E(X))Z:j.x2(2x) dx—[jx(bc) dx] :%

0 0

jsd()():L

J18
1
° Sd(}) = Sd(X) = ﬁ = \/E
Jnoo 80 120
©2024 2024-MSP-VIC-U34-NA-EX2-QATS
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Q 20 Method 1: A
Use a CAS to check the confidence interval arising from the value of » in
each option: n=92.

Method 2:
14572 =x+k-Z e (1)
Jn
14428 = x—k-Z o (2)
Jn
(1)+(2) = x =14500
For a 90% confidence interval: Pr(—k <Z <k)=0.95= k ~1.64485 (use a
CAS).
Substitute x =14500, k£ =1.64485 and o =420 into either equation (1) or
equation (2) and solve for n (use a CAS and round to the nearest
integer):
n=92.
©2024 2024-MSP-VIC-U34-NA-EX2-QATS
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SECTION B: Solutions
Question 1
Part a.:

Note: These are only potential asymptotes because the asymptotic behaviour of f
depends on the values of ¢ and 5. Some of these asymptotes do not exist for particular
values of @ and b (for example, f has no asymptotes when a=0 and b=-1).

e Potential vertical asymptote: x =1

e Asymptotic behaviour as x — too:

= (o-r) -

H
|
|
|

',\195""
y | 2]

)

-X , %
!
(
I

S

AY

I
t 7 A
l

/\

o

To consider x =+ it is therefore necessary to get the rule for y = 7(x) when x21:

2_ —_—
y:f(x):x ax+b:x+1_a+b a+l1

x—1 14442 45443

Use a CAS or by hand'

X—>10: y~x+l-a

To consider x = — it is therefore necessary to get the rule for y = f(x) when x<0:

x> —a(-x)+b x*+ax+b a+b+1
y=f(x)= = = —x—l-a- X—=>—0: y~—x-1-g
—(x=1) —x+l 144424528
Use a CAS or 'by hand'
Three correct potential asymptotes:
x=1, y=x+l-a, y=—x-1l-a
. 2 marks
Do not accept y=|x+1|-« in place of y=x+1-a and y=-x-1-a
(because y=x+1-a is sometimes a diagonal asymptote when
y=-x-1-a is not, and vice versa).
Two correct potential asymptotes. 1 mark
One or no correct potential asymptotes. 0 marks
©2024 2024-MSP-VIC-U34-NA-EX2-QATS
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Part b.:

2
| x—1]

For fto be ‘smooth’ at x =0 it is necessary and sufficient that 7'(x) is continuous at
x=0

It is therefore necessary and sufficient that:

L. lim f"(x) exists. 2. lim f'(x) = f'(0)

1. Existence of lim f'(x)

x—0
From a CAS:
lim f'(x)=b—a lim f'(x)=a+b
x—0" x—=>0"

lim f'(x)= lim f'(x) —>b—-a=a+b =a=0andbeR
x—>0"

x—0"

lim f'(x)=b—a lim f'(x)=a+b a=0and beR 1 mark
x—>0"

x—0"

2. a=0 and beR = lim f'(x) =b. It must now be checked that 7'(0)=5
x—0

x2+b _x2+b

a=0 and x - 0= x <1 therefore f(x)= =
—(x-1) —x+1

From a CAS: 7'(0)=b

x2+b
—x

S(0)=>b

1 1 mark

lim f(x)=b f(x)=

Therefore not ‘smooth’ at the point where y =5 unless a=0
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Part c.:
Answer:

y=x-4
4 6 x
—_24
y=-x-6
Shape:
There must be a ‘corner’ at the y-intercept. 1 mark
The turning point in the interval (2, 3) must be lower than the turning
point in the interval (-3, -2).
Asymptotes: x=1, y=x-4, y=-x-6. 1 mark

Axis intercepts: 2, 0), @3, 0), (-2, 0), (-3, 0), 0, 6). | 1 mark

Calculations:

* Asymptotes are found from Part a.

Vertical asymptote: x =1

Diagonal asymptotes: Substitute into a =5 into y=x+1-a and y=-x-1-a
e Axis intercepts:

x2—5|x|+6_

y-intercept: Substitute x =0 x-intercepts: Use a CAS to solve ]
x—

e Shape: From Part b. the graph is not smooth at x=0 (that is, the y-intercept)
because a #0. Therefore there is a ‘corner’ at x=0
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Part d.:
x2—1|x—2| x2—1|x—2\
° 2——arccos(x)—k=0 = —=——=arccos(x)+k
|x[-1 |x[-1
x2—1|x—2|
e Consider the graphs of y=f(x)=2— and y = h(x) = arccos(x) + k

| x|-1

It is required to find the values of & for which these graphs have three intersection points

The value of k controls the vertical translation of y = arccos(x—1)+k:

_11
¢ Minimum value of &:

By inspection the value of k£ needs to be greater than the value of k such that point of

2 1
X ——=|x=2|
inflection of A(x) = arccos(x)+k coincides with the ‘corner’ of f(x) =|2|—1
x —

at (1, 0).
It is therefore required that the y-coordinate of the point of inflection of y = arccos(x)+k& is
equal to 1:

hO)=1: Z4k=1 =k=1-2
2 2
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¢ Maximum value of k:

> 1
X" —=|x-2|
By inspection there is some value k =« such that f(x):||—1 and
xl—

h(x) = arccos(x) + k have a common tangent in the interval 0 <x <1
There are therefore three intersection points when 1—% <k<a

2
f(x)zM for 0<x<l1
2(x—-1)

Let x = g at the point of common tangency. It is required that

S(B)=h(p) (D)
S(B)y=H(B) .- (2)
and 0< <1

Use a CAS to solve equations (1) and (2) simultaneously for a: a ~-0.045612

Note: £ ~0.520072
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— y=cos~'(x)-0.0456

1—% <k <—0.0456 .

Note:

The correct maximum value of &, rounded to four decimal places, is
-0.0457 and should be accepted (rounding UP is required).

2 marks:

1 mark for the
minimum value of k.

1 mark for the
maximum value of k.

, 1
X —=|x-2|
This is because y = arccos(x)—0.0456 is above y = ‘2‘ —on the
xl—
interval (0, 1)
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Question 2

Part a.:

|z—1|=1 is a circle with radius »=1 and centre at z=1:

Answer: (x—1)"+y" =1 1 mark

Part b.:

e |z|=|z-1] is the perpendicular bisector of the line segment joining z=0 and z=1:
1

X=—

2

e Solve (x—l)2 +y2 =1 and x:% simultaneously to get coordinates of intersection

points:

1 <3 1 -3
Answer: (5, i} and [—, —IJ 1 mark

2 22

* Required area=2(Area of sector 4CD + Area of triangle ABC):

4(Im(2))

vy
Ll A
7
0 o "x( Re(@))
2
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e Area of sector ACD:

cos(zacB)=3S -1 o LucB=Z = spcB=n-Z-2Z
AC 2 3 33
1 . T
Area of sector ACD = 3 (4rgg of girge) = 3
r=1
Area of sector 4CD =% 1 mark

11 3 3
e Area of triangle ABC = —(—j (iJ = £

202){ 2) 8

7[\/5]

- 2(‘*?
e Required area
27 x/§
Answer: _+T
1 mark
Accept 87+33
12
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Part c.:

e z=0 is the exceptional element of S={z: |z—1|=1, ze C} thatis not an element

{z: aArg(l—gj:Arg(zz), ze c}

* Allelements S\ {0} are elements of {z: aArg(l—éj = Arg(zz), ze C}

z

Therefore substitute two convenient elements of S\ {0} (use the answer to Part a.). For

example:
c=1+i: ahrg1-—2 = Arg((1+i)’ (1)
: o
1 3, b 1 V3 Y
z=+=7it aArg 1+\/§. g[(2+21 (2)
—_— —+—1
2

Use a CAS to solve equations (1) and (2) simultaneously under the restriction a,b € R*:
a=1and b=1.

Note: The very convenient value z =2 does not give an equation that allows the unique
solution for @ and b.

Clear and valid method 1 mark
Answer: a=1 and b=1 1 mark
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Part d.:

—%<Arg(z)<% for ZESz{Z: |Z|:|Z—1|,ZEC}

Note:
1. z-0as Arg(z)—)i% and Arg(0) is not defined.

2. Arg(z2 ) =2Arg(z) since —%<Arg(z) < %

3. z=0 is the exceptional element of S that is not an element of
{ZZ Arg(z-1) =Arg(zz), zZ€ C}

(because Arg(Oz) is not defined).

Case 1: zeS\{0} and 0 < Arg(z) <% (upper half of the circle).

Let Arg(z—1)=a and Arg(z)=p:

3(Im(2))

Proving Arg(z-1) :Arg(zz) is equivalent to proving a =24:

OC = CB (=1=radius of circle)
therefore AOCB is isosceles

therefore /BOC = 8= 20BC
therefore /OCB=7n-24. .... (1)
But ZOCB=7-a. ....(2)

From equations (1) and (2): z-28=7n-a =2f=a n
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Case 2: ze5\{0} and —% < Arg(z) <0 (lower half of the circle).

The proof is identical to Case 1 by symmetry.

Arg(zz) =2Arg(z) since —§<Arg(z) < %
z =0 is the exceptional element of S that is not an element of 1 mark
{z D Arg(z-1) = Arg(z2), z€e C}
Appropriate labelled diagram.
1 mark
Geometric proof.
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Parte.:
Answer:

Im(z)

24

14

f ; f ' ' R
) p »- Re(z)
—_24

Shape: Circle |z—1=1 with ‘hole’ at z=0 1 mark
Shape: Ray with terminus at z=1 1 mark
‘Hole’ at terminus of ray. 1 mark

Calculations:
Shape:

e From part d. it is known that the circle |z-1=1, z#0, is part of the solution.

e From part d. it is seen that Arg(z—1) and Arg(zz) are equal when z is real and
z>1 (a=8=0)

Alternatively, Arg(z-1) :Arg(zz) when z>1 can be seen by inspection. If z is real:
' >0 therefore Arg(z*)=0

z>1=z-1>0 therefore Arg(z~1)=0 therefore Arg(z-1) = Arg(z?)
z<1=z-1<0 therefore Arg(z—1)=r therefore Arg(z-1)= Arg(z2)

Arg(z-1) is not defined for z=1 therefore z=1 is not a solution to Arg(z—1)= Arg(z2)
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Part f.:
Let Arg(z—1)=a and Arg(z) = 8 where o =24 (from Part d.).

. Arg(zz): 2Arg(z)
since ze S and —%<Arg(z) <% for S
=28
. Arg(22 —z) = Arg(z(z—1)) = Arg(z) + Arg(z— )= f+a = f+2 =3/
provided

-t <3p<nx :—%<,BS%

Then 3Arg(z?)=2Arg(z2-z)  =3(25)=23p) ¥

Recognition that Arg(22 _Z) = Arg(z) + Arg(z —1) provided

1 mark
- <Arg(z)+Arg(z-1)<~x
Answer: —% < Arg(2) s% 1 mark

Discussion: Im(z)

Sketch of {z: 3Arg(zz) = 2Arg(z2 —z), z€e C};

Calculations:

e Itis known that the circle |z—1|=1 is part of the solution for —§< Arg(z) s%

* ltis seen by inspection that 3Arg(2*) and 2Arg(2* - z) are equal when z is real and
z2>0 and z2 —z>0:

z<0orz>1
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Note: If z is real:

=2 > o therefore Arg(z2):o
e :>1=z>—z>0 therefore Arg(zz—z):o therefore 3Arg(z2):2Arg(z2_z)
° 0<z<1= z>—z<otherefore Arg(22 —z) = 5 therefore 3Arg(zz) #= 2Arg(22 —z)

* z<-1=2z"—z>otherefore Arg(z*-z)=0 therefore 3Arg(2*)=2Arg(2* -z)

Question 3

Part a.:

1

V= ﬁj‘{% [ﬁaﬁlz@g)} dx 1 mark

0

Answer: 7.2106 cubic units 1 mark
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Part b.:

Integral terminals:

e x=-1 =y=y3-tan'(-2). Accept y=43+tan"'(2)

° x=0 jy:\/g

J3-tan~' (=2) 5 3+tan~'(2)
S=2rx I X 1+(d] dy or j f1+ — 1 mark
dy

1 mark

pe)

Order of
terminals
3 & A must be
Accept S=-27 J x l{dyJ dy, I x /1+ dy etc correct.
«B—tan"(—Z) 3—tan~' (- 2)
. 1 .
e Substitute x = Et;m(3_y2) :
Answer: 3.2253 square units. 1 mark
Part c.:
p 2
d
L=7Z’j 1+(—yj dx 1 mark
dx
-1
Answer: 2.1233 units. 1 mark
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Part d.:

Use S:27IJ‘y‘,1+(%) dx: e 5 :27zj.f(x)\/1+(f'(x))2 dx

b

e S, :2ﬁjg(x) l-l-(g'(x))2 dx

a

b

S, = 27zJ'( S@)+k) 1+ (f(x) dx 1 mark

a

b b
.

=27 | FON1+(f'(x)) dx+27 j I 1+( /(%)) dx

L
a

b

—2x .f(x)\/1+(f'(x))2 dx+27rkJAw/1+(f’(x))2 dx

a 1444244248
L
Answer: Sg :Sf +27kL 1 mark
Question 4
Part a.:
. dN . 150
Require =X~ ¢ at t=0, that is, when N =150: 2(150){ 1-——— |-n>0
dt 600
Answer: 0<n<225 1 mark
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Part b.:
éx:2N(1——‘l-j—n ::5%: IN —
dt 600 2N(L—j—n N aN-n
600 300
_ 72
Require 0 +2N —n to be a perfect square. 1 mark

-1
Therefore A=(2)*-4| — |(-n)=0.
erefore A=(2) (30())( n)

Answer: n =300 1 mark

Check (use a CAS):

dN N
Solve EZZN(I_EJ_NO with initial condition N(0)=150:

_300¢=D) _ 5, 300
12 t—2

N

Observation: N=0 when 7r=1.
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Part c.:

dN N
Use a CAS to solve ’ = 2N(1—@j—n with initial condition N(0)=150:

N =300-10+/3 n—300tan[

Nnmom 300 {+tan”" (—S\B j
1043 Jn=300

Note: Different CAS may give different but equivalent forms.

Substitute =4 and solve N =0 for n (round to the nearest integer):

=300 [ 583
300 —10+/3n =300 tan| 2" 4 tan' | —22_ | |=0 1 mark
[ 1043 [x/n—3OOB
Answer: n=227 1 mark

Check (use a CAS):

dN N
e Solve E:2N(1—@j—227 with initial condition N (0) =150

e Substitute N =0 and solve for t: t =3.96966 v
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Partd.i.:

dN N
EzzN( _@j-loo with initial condition N(0) =150

Phase diagram (plot of cii_N versus N):
¢

E A j’g >0 _—':7 N intrea;es

d_N>o at =0 (N =150) therefore Ninitially increases.

dt

an >0 as Nincreases (t>0) therefore N continues to increase.

dt

N = 300410086 as 4N .

dt
Valid explanation that refers to a phase diagram.
1 mark
N —300+100v6
Answer: 545 1 mark
Check (use a CAS):
dN N
e Solve EZZN(I_@J_IOO with initial condition N(0)=150
e Calculate lim N(¢): 300+100:/6
t—>+x©
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Part d. ii.:

dN N
= ZN( —@j—loo has a turning point at N =300 therefore there is a point of

inflection at N =300

Answer: N =300 1 mark

Check (use a CAS):

dN N
e Solve EZZN(I_@j_IOO with initial condition N (0)=150

d’N 133, [4++6
Solve =0 fort. t=———1log,
' ar 22 " [4—%
143 4++6
Substitute t=——Ilog,| ——= | into N: N =300
’ 22 ¢ (4-%]
Part e.:

dN N
e Use a CAS to solve m = ZN(I—EJ—IOO with initial condition N (0) =150

e Substitute N =400 and solve for ¢ (round to two decimal places):

Answer: =140 1 mark
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Question 5
Part a.:

If v and w are normal to each other then v-w=0:

1 mark
(—i—2j+k)-(3i—2j—kj:—3+4—1:O
I Explicit
calculation is
required.

Part b.:

Method 1:

e A cartesian equation of the plane is ax+by+cz=d where n=qi+bj+ck isa
vector normal to the plane. N

A normal vector to the plane is n=vxw. From a CAS or ‘by hand’:

vxw =4i+2 j+8k

Normal vector: 4i+2 j+8k 1 mark

e Therefore ¥ +2y+8z=d

Substitute the point (2, —2, —1) into 4x+2y+8z=d and solve ford: d =—4

Therefore 4x+2y+8z=—-4

e Explicit solution for d using the point (2, -2, —1) 1 mark
e  Answer: 2t+y+dz=-2 Accept all
equivalent
answers.
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Method 2:
e (2, —2, —1) is a point contained in the plane II and the vectors v and w are

parallel to I1

Therefore a vector equation of 1 is 1; =21-2j-k+Av+uw where AeR and ueR

Therefore a set of parametric equations defining I is

x=2-A+3u e (1)
y=-2-21-2u ... (2) 1 mark
z=—1+A—pu ... (3)

e Use a CAS to solve equations (1), (2) and (3) simultaneously for A, z and one of
either x, y or z and simplify the ‘cartesian’ solution.

(This is equivalent to solving two of the equations simultaneously for A and x in terms
of x, y and z and then substituting those solutions into the third equation).

Answer: 2x+y+4z=-2 1 mark
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Part c.:

From the answer to Part b., it is noted that the point (4, 2, —3) is contained in the

plane II.

The vectors v and w are parallel to I1.

Therefore a vector equation of 11 is

1 mark

e Symbols different
to r and z
must be used in

the vector
equation.

iy =41+2j-3k+Av+uw where AeR and ueR

e Parameters must
be explicitly
defined.

Note:

e A symbol different to r must be used in the vector equation of I1 because r is the

position vector of the object.

e A symbol different to # (such as A ) must be used to represent a parameter in the
vector equation of IT because ¢ represents time in the position vector of the object.

Choosing 4 =cos(2¢t) and u=sin(3¢) in 1y =41+2j-3k+Av+uw

defines the position vector of the object.

1 mark
Therefore the points on the path followed by the object are a subset
of the points contained in the plane.
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Part d.:

o 1;=41+2j-3k+cos(2t)|v|v+sin(3t)|w|w (from part c.).

A

e Since v and w are perpendicular to each other (from part a.), the unit vectors v

A

and w parallel to the plane IT are analogous to the unit vectors i and j parallel to
the xy-plane.

e Therefore the parametric equations defining the path followed by the object in the
plane I1 are equivalent to the parametric equations

x = v|cos(2r) = J6cos(21), v =l w]sin(3) = V14 sin(3t)

in the xy-plane.

x=+/6cos(2t), y=/145in(37) 1 mark

e Substitute ¥ =V60c0s(2t), y:\/ﬁcos(zt), t,=0 and t, =1

¢ 2 2
into the arc length parametric formula I\/(%j +(%j dt and evaluate using a CAS:

4

Answer: 8.24 1 mark
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Parte.:
s=1+ j+6k+z(—i+6j—kj is the vector equation of a line.

By inspection a set of parametric equations defining the line is

x=1-t =>t=—x+1 ....(1)
y—1

y=1+6t jt:T (2)

z=6-t =>t=—z+6 ....(3)

Equate equations (1), (2) and (3):

Answer: —x+1:y—:—z+6
6 1 mark

Accept all equivalent forms.

Part f.:

e |tis prudent to check whether or not the line intersects the plane IT (if the line
intersects the plane then the distance is equal to zero).

Method 1:

Substitute the parametric equations

x=1-t, y=1+6t, z=6—t

of the line into the equation 2x+ y + 4z =-2 of IT (from part b.) and solve for ¢
20-0)+(+61)+4(6—-1)=—2  =27=-2

which is inconsistent. Therefore the line does not intersect 1T.
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Method 2: Determine whether or not the line is parallel to IT.

A vector in the direction of the line is —i+6 j—k (by inspection) and a normal vector to

the plane is 4i+2 j+8k (from part b.).

(—i+6j—kj-(4i+2j+8k} =0 therefore the line is parallel to the plane.

Note: The line does not lie in IT since any chosen point on the line does not satisfy the
equation of the plane.

Calculate the distance.

Note: Since the question is worth 2 marks, “appropriate working must be shown”.

Method

Example calculation

Calculate the distance from IT of any
chosen point P on the line.

Choose P(1, 1, 6) (correspondingto =0

).

Define the position vector of P.

%
OP =i+ j+6k.

Get a normal vector n to IT.

n=4i+2j+8k (from partb.)

Apply the distance formula ™
n

where d is found from the cartesian
equation ax+by+cz=d of I1.

From either a CAS or ‘by hand’:

‘[1i+2j+81~<j-(i+j+61fj—(—2)‘ w7

| 4i+2 j+8k| NCl

Note: d =-2 comes from 2x+y+4z=-2

(from part b.)
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_)
n-OP—d
Application of U o or any other valid method. 1 mark
n
Answer: 4\/3i 1 mark

Derivation of distance formula:

¥l
™ o Iai:lscqldw feﬁdufm’-g a[‘*i—g;n
F He A‘LI?CLI:G‘M a[: ﬂl
i

S Mol | (ahea) ]

%& Inl in |
-—'
IS b —neon]

- la,o{)
Lnl

- [f‘;‘;?’ -4
Ln
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Question 6

Part a.:
e Let Xbe the random variable “Amount of manure (kg) in a small bag”:

X~Normal(uy,, oy, =0.75)
e Letthe random variable w = x, + X, + X,

where X,, X, and X, are independent copies of X:
My = My, + My, + My, =3y
oy =10y, +1°0y +170y, =30y =3(0.75)" therefore o), =0.75v/3

W follows a normal distribution since X,, X, and X, are independent normal random
variables.

Definition of appropriate random variables.

1 mark
W~ Normal(3yX, oy = 0.75\/5)

o Pr(W >46)=0.6239.

S Wowy  __46-3uy

where Pr(Z > z)=0.6239 = z = —-0.31574

oy 0.75\/3
1 mark
46 —3uy 031574 Give 1 mark if z-
0.75V3 ' value is wrong but
do not give the
answer mark.

e Use a CAS to solve for x: Hx =15.4701
1 mark
Answer: y, =15.47 There must be
evidence that Z was
used.
Rounding check: ., =15.47 = Pr(W > 46) = 0.62385~0.6239 v
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Part b.:

The statistical test is applied at the 3% level of significance therefore the probability of a

.3
type | erroris —=10.03
yp 100

Answers:

1 mark

Part c.:

2= 3974 9503125
32

e Two-sided test therefore p = 2Pr(f > 25.23125|HO true) .
- ¥ Oy 1
Under H,: X ~Normal| u = uy =25, oy =—F==—=

Therefore:

p= 2Pr(? >25.23125

= 1
X ~ Normal[yX =25, oy =—=
V32

Accept all equivalent statements such as 1 mark

— — 1
p= Pr[X—ES > 0.23125\)@ Normal(,ux =25, oy —32n

e From a CAS:

Answer: 0.0954 1 mark
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Part d.:

* Definition: A type II error is the failure to reject H, when H, is false.

« Critical values C, and C, of X (use a CAS):

AF H, Froe
f 1 Lo TR

'(-—:_-i! ﬂc(efl‘qwg f!jian For HtJ

|
|

PAF’\ 'l : : HI "rue
: erMIHtI_WE):P{[TjreEError)
LA I
R _
HE3 15.¢ A
& <G
Note 1:

Cl* and C; are symmetric about x-; =25 by symmetry of the normal distribution.

Note 2:

The interval (Cl* C;) is not a confidence interval. It is the acceptance region for H,,
e H, is accepted when ;e(Cl*, CZ)

Option 1:

Pr(X>GC i]=%(0.03)=0.015:> C, =25.3836214. Pr(X <Cy )=0.015= (] =24.61637859.

Option 2:

Pr(25—k <X <25+k)=097=k=0383621  C =25-k and C; =25+k
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1 mark
A correct critical value: More than three
decimal place
Either C, =24.61637859 or C, =25.3836214 accuracy is required

(to avoid rounding
error in final answer)

Statement of probability of type II error using critical
values:

1 mark
Pr(Cf <X < Cy|py =25.6)
Answer: 0.110 1 mark
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